Classifier Combination : the Role of a - Priori Knowledge

نویسندگان

  • V. DI LECCE
  • G. DIMAURO
  • A. GUERRIERO
  • S. IMPEDOVO
  • G. PIRLO
  • A. SALZO
چکیده

The aim of this paper is to investigate the role of the a-priori knowledge in the process of classifier combination. For this purpose three combination methods are compared which use different levels of a-priori knowledge. The performance of the methods are measured under different working conditions by simulating sets of classifier with different characteristics. For this purpose, a random variable is used to simulate each classifier and an estimator of stochastic correlation is used to measure the agreement among classifiers. The experimental results, which clarify the conditions under which each combination method provides better performance, show to what extend the a-priori knowledge on the characteristics of the set of classifiers can improve the effectiveness of the process of classifier combination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Knowledge Translation in Healthcare – Towards Understanding its True Complexities; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”

This commentary argues that to fully appreciate the complexities of knowledge transfer one firstly has to distinguish between the notions of “data, information, knowledge and wisdom,” and that the latter two are highly context sensitive. In particular one has to understand knowledge as being personal rather than objective, and hence there is no form of knowledge that a-priori is more authoritat...

متن کامل

Multiple Classifiers Combination Based on Interval-valued Fuzzy Permutation

Multiple classifiers combination is a technique that combines the decisions of different classifiers as to reduce the variance of estimation errors and improve the overall classification accuracy. A new multiple classifiers fusion method integrated classifier selection and classifier combination is proposed in this paper. It is base on interval-valued fuzzy permutation. Firstly, normalize all c...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000